Stimuli-responsive microwells for formation and retrieval of cell aggregates.
نویسندگان
چکیده
Generating cell aggregates is beneficial for various applications ranging from biotechnology to regenerative therapies. Previously, poly(ethylene glycol) (PEG) microwells have been demonstrated as a potentially useful method for generating controlled-size cell aggregates. In addition to controlling cell aggregate size and homogeneity, the ability to confine cell aggregates on glass adhesive substrates and subsequently retrieve aggregates from microwells for further experimentation and analysis could be beneficial for various applications. However, it is often difficult to retrieve cell aggregates from these microwells without the use of digestive enzymes. This study describes the stable formation of cell aggregates in responsive microwells with adhesive substrates and their further retrieval in a temperature dependent manner by exploiting the stimuli responsiveness of these microwells. The responsive polymer structure of the arrays can be used to thermally regulate the microwell diameters causing a mechanical force on the aggregates, subsequently facilitating the retrieval of cell aggregates from the microwells with high efficiency compared to PEG arrays. This approach can be potentially integrated into high-throughput systems and may become a versatile tool for various applications that require aggregate formation and experimentation, such as tissue engineering, drug discovery, and stem cell biology.
منابع مشابه
Rapid fabrication of functionalised poly(dimethylsiloxane) microwells for cell aggregate formation.
Cell aggregates reproduce many features of the natural architecture of functional tissues, and have therefore become an important in vitro model of tissue function. In this study, we present an efficient and rapid method for the fabrication of site specific functionalised poly(dimethylsiloxane) (PDMS) microwell arrays that promote the formation of insulin-producing beta cell (MIN6) aggregates. ...
متن کاملState of the art of stimuli-responsive liposomes for cancer therapy
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...
متن کاملState of the art of stimuli-responsive liposomes for cancer therapy
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...
متن کاملControlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells.
Directed differentiation of embryonic stem (ES) cells is useful for creating models of human disease and could potentially generate a wide array of functional cell types for therapeutic applications. Methods to differentiate ES cells often involve the formation of cell aggregates called embryoid bodies (EBs), which recapitulate early stages of embryonic development. EBs are typically made from ...
متن کاملStimuli-responsive Biosynthesis of Gold Nanoparticles: Optimization, Kinetics, and Thermodynamics of Biosorption
Green nanotechnology with the goal of producing sustainable nanomaterials in an eco-friendly approach is becoming an increasing necessity for nanomanufacturing industries. In this regards, biosynthesis is well adopted as a viable method for producing benign nanoparticles for biomedical application. The present study aimed at optimization and study of the effects of external stimuli pH and gold ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 10 18 شماره
صفحات -
تاریخ انتشار 2010